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Abstract

A population of several spherical voids is included in a three-dimensional, small scale yielding model. Two distinct
void growth mechanisms, put forth by [Int. J. Solids Struct. 39 (2002) 3581] for the case of a two-dimensional model
containing cylindrical voids, are well contained in the model developed in this study for spherical voids. A material
failure criterion, based on the occurrence of void coalescence in the unit cell model, is established. The critical ligament
reduction ratio, which varies with stress triaxiality and initial porosity, is used to determine ligament failure between the
crack tip and the nearest void. A comparison of crack initiation toughness of the model containing cylindrical voids
with the model containing spherical voids reveals that the material having a sizeable fraction of spherical voids is
tougher than the material having cylindrical voids. The proposed material failure determination method is then used to
establish the fracture resistance curve (J-R curve) of the material. For a ductile material containing a small volume
fraction of microscopic voids initially, the void by void growth mechanism prevails, which results in a J—R curve having
steep slope. On the other hand, for a ductile material containing a large volume fraction of initial voids, the multiple
voids interaction mechanism prevails, which results in a flat J-R curve. Next, the effect of T-stress on fracture resistance
is examined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are briefly
discussed.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Ductile fracture in metallic alloys usually follows a multi-step failure process involving several con-
current and mutually interactive mechanisms (Van Stone et al., 1985; Garrison and Moody, 1987). Es-
sentially these mechanisms, at the microscopic level, include the following: (a) nucleation of microscopic
voids by either fracture or decohesion of the second-phase particles and inclusions, (b) growth of the fine
microscopic voids due to localized plastic deformation and eventual coalescence, (c) localization of plastic
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Fig. 1. SEM fractograph of ductile fracture in an aluminum alloy (AA2009) showing that the fracture surface is filled with voids of
different size scales. (a) Formation of voids around cracked second phase particles. (b) Void coalescence to form microscopic crack.

flow between the growing voids, and (d) final tearing or rupture of the ligaments between the grown and
enlarged voids. Fig. 1 is a SEM fractograph of ductile fracture in an aluminum alloy showing that the
fracture surface is filled with voids of different size scales. Understanding the phenomenon of cracking in
ductile materials under the conjoint influence of the applied load and structural geometry has necessitated
the need to study the intrinsic mechanisms governing microscopic void formation, their growth and
eventual coalescence by failure of the ligaments between the advancing crack tip and the voids, or between
neighboring voids.

Mechanism-based fracture mechanics attempts to link micro-structural variables and continuum
properties of the material to macroscopically measured fracture resistance. This provides a meaningful
insight to support the development of predictive fracture models for an assessment of structural compo-
nents. Two types of approach have been proposed in the published literature to implement the mechanism-
based concepts. In the first approach the voids are considered to be implicit. The feature of this approach
(Gurson, 1977; Tvergaard, 1982; Needleman and Tvergaard, 1987; Koplik and Needleman, 1988; Bilby
et al., 1993; Brocks et al., 1995; Xia and Shih, 1995; Faleskog et al., 1998; Gao et al., 1998a,b) is that the
events governing void nucleation, progressive growth and eventual coalescence are included in the nu-
merical problem. This is achieved by using void containing elements based on the continuum damage
models, e.g., the Gurson-Tvergarrd constitutive model (Gurson, 1977; Tvergaard, 1982). A distinct ad-
vantage of this approach is that either one or two elements can be used to represent the presence of a
microscopic void in the material. The sizeable difference associated with characteristic length scales is re-
duced to a manageable problem. However, the primary disadvantage of this approach is that a precise
constitutive model, which represents the behavior of a void containing material, is needed.

In the second approach the voids are considered to be explicit. In this approach, the shape of voids is
modeled using refined finite elements. Due to the computational limitations, only a limited number of voids
can be considered in this model. An exact implementation of void growth behavior is the distinct advantage
of this approach. For void coalescence to occur, a failure criterion for the ligament between a void and the
crack tip is needed in order to establish crack advance. The published literatures in this area are mainly two-
dimensional. Aravas and McMeeking (1985a,b) critically examined the interaction between the crack tip
and a cylindrical void under the plane strain, small scale yielding conditions. Several criteria were put forth
for coalescence of the crack tip with the void and the fracture initiation toughness was estimated. Arun Roy
and Narasimhan (1999) investigated the effect of crack tip constraint on void growth under mixed Modes I
and II loading. Yan and Mai (1998) analyzed the growth of a single cylindrical void positioned ahead of a
blunt crack tip in a specimen subjected to three-point bending. A variety of crack lengths and void volume
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fractions were examined. In these studies, only a single void is presented in the crack tip region. In a
subsequent study, Gu (2000) considered the presence of multiple voids ahead of a crack tip, where six
cylindrical voids were inserted ahead of the crack for both the compact tension and center-cracked tension
specimens. More recently, Tvergaard and Hutchinson (2002) investigated two distinct mechanisms for
ductile crack initiation and growth using the plane strain, modified boundary layer (MBL) model con-
taining multiple cylindrical voids. The two mechanisms are the void by void growth mechanism, which can
be explained by interaction of a single void with the crack tip and the subsequent void by void advance of
the tip and the multiple void interaction mechanism, which can be described by simultaneous interaction of
multiple voids on the plane ahead of the crack tip both during initiation and subsequent crack growth.
They found that the transition of two mechanisms is primary governed by the initial void volume fraction.
That is, the material with smaller initial void volume fraction shows the void by void growth mechanism
and the material with larger initial void volume fraction exhibits the multiple voids interaction mechanism.

There exists limited documentation in the published literature on three-dimensional analysis of materials
containing spherical voids. Kuna and Sun (1996) investigated the influence of void arrangement on the
macroscopic deformation and softening behavior of a unit cell and found that the three-dimensional plane
strain model containing a spherical void is stiffer than the two-dimensional plane strain model having a
cylindrical void. Hom and McMeeking (1989) used the three-dimensional MBL model to analyze the in-
teraction between a growing void and the crack tip. Their results reveal that the microscopic void posi-
tioned ahead of an advancing crack grew faster towards the crack tip direction and the resultant void had
an oblate shape. This convincingly reveals that the interaction between the growing void and the advancing
crack tip is strong and overcomes the effect of a tensile stress field present ahead of the crack tip, which
would tend to elongate the void in the tensile direction. Their study also revealed that the initially cylin-
drical voids grew five times faster than the rate of spherical voids. The coalescence criteria initially proposed
by Rice and Johnson (1970), and subsequently by Le Roy et al. (1981) were used to determine the initiation
of crack growth. The predicted fracture initiation toughness from the model containing a spherical void was
higher than from the model containing a cylindrical void.

The objective of this paper is similar in approach to the research documented by Tvergaard and
Hutchinson (2002) but the analysis here is three-dimensional. Several spherical voids are included in the
three-dimensional MBL model to understand (a) the nature of void growth rate, (b) the critical ligament
reduction ratio for ligament failure by void coalescence and (c) the macroscopic stress—strain behavior of a
representative material volume containing an embedded void. A procedure to predict crack initiation is
established based on the results of extensive unit cell analyses. Results of the J—R curve for early stages of
crack propagation are presented and discussed. The effect of T-stress on fracture resistance is also exam-
ined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are
briefly discussed.

2. Finite element modeling

This study considers the Mode I, small scale yielding (SSY) problem, i.e., the plastic zone size is assumed
to be small comparing to the geometric dimensions of the specimen. In ductile metals, voids often nucleate
at relatively low stress levels due to fracture or decohesion of the large inclusions. For the purpose of
analysis, voids are assumed to be present in the material at the onset of loading. Further, it is assumed that
the pre-existing voids have a spherical shape and the microscopic voids are distributed periodically as
shown in Fig. 2(a). In an attempt to rationalize fracture behavior, a local coordinate system is set up such
that x-axis represents the crack propagation direction, y-axis represents the crack opening direction and z-
axis represents the thickness direction. Considering the existence of symmetry about the crack plane, only
half of the region needs to be modeled. Additionally, it is assumed that deformation along the thickness
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Fig. 2. (a) Periodical distribution of voids in the plane of crack propagation. (b) Domain of the boundary value problem. (c) Finite
element mesh of the SSY model containing five initially spherical voids. (d) Close-up of the crack tip region showing an array of five
unit cells with each cell being a cube containing a centered, spherical void.

direction of the specimen is periodically symmetric. This obviates the need to consider edge effects, which
are prevalent near the surface of the specimen. Due to the periodic distribution of voids, only half of the
void spacing distance is modeled through the thickness, Fig. 2(b). Both void spacing and void volume
fraction can be varied by changing the ratio of Xp/R, where X, represents the initial spacing between voids
situated on the crack plane or the spacing between the crack tip and the nearest void and Ry is the initial
radius of the void. Boundary conditions are prescribed on the planes normal to z-direction as

u, =0,
tx:()a (1)
6, =0,

where u, represents the displacement component in z-direction, ¢, and ¢, represent the components of
surface traction in x- and y-directions respectively.

To resolve the crack tip deformation field and enhance convergence of the nonlinear iterations, the finite
element mesh contains an initial root radius at the crack tip. Previous studies have shown that the influence
of initial root radius becomes negligible if it is sufficiently small comparing to the void spacing. Here the
initial root radius of the crack tip is taken to be the same as the initial radius of the void. Numerical so-
lutions are generated by imposing displacements of the elastic, asymptotic Mode I field (plane strain) on the
outer circular boundary. In this study, the radius of the outer circular boundary is taken to be 10,000 times
the initial void spacing to assure the small scale yielding conditions being satisfied. The displacements at the
outer boundary are given by

1+ [n 0 .50 (1 —v%)
Uy = 7 E{chos§<2—4v+2sm 3 +TTrocos€),

L+v [r 0 0 v(I +v .
U, = —O{]<]COS§(4-4V-2COS2 E)} —%TF{)SIHQ,

E 2n
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where K| represents the Mode I stress intensity factor, 7' represents the nonsingular 7-stress parallel to the
crack plane, (r, ) denote the crack tip polar coordinates, and ry is the radius of the outer circular boundary
of the SSY model. Loading of the SSY model proceeds by imposing the displacement increments on the
outer boundary according to the asymptotic fields. For problems having nonzero T-stress (magnitude less
than yield stress), the displacements due to 7-stress are imposed first. Subsequent load steps impose dis-
placement increments corresponding to specified AK; values.

Fig. 2(c) shows a typical finite element mesh of the SSY model containing five spherical voids. The mesh
consists of 8184 twenty-node, isoparametric, brick elements with reduced integration. Fig. 2(d) shows a
close-up of the crack tip region. It is natural to consider the material ahead of the crack tip as an array of
unit cells with each cell being a cube containing a centered, spherical void, Fig. 2(d). A quarter of each cell
has 96 elements around the void and eight elements in the radial direction.

The material chosen for this study obeys the power-law hardening (true) stress—strain relation

o
SZE, o < 0y,

oo [ o\ (3)
8:f<0_—0> , 0 > 0,

where £ = 200 GPa, oy = 600 MPa, v = 0.3 and N = 0.1, which is representative of structural steel having
an intermediate strength and moderate strain hardening. The stress—strain relation is implemented in
ABAQUS (2001) by using the UHARD user subroutine.

3. Results and discussions
3.1. Void by void growth versus multiple voids interaction

Performing two-dimensional plane strain analyses and assuming the presence of cylindrical voids em-
bedded along the thickness direction, Tvergaard and Hutchinson (2002) found that there exist two failure
mechanisms, single void growth mechanism and multiple voids growth mechanism. The single void growth
mechanism is explained by the interaction of the crack tip with the nearest void and the subsequent advance
of the crack tip from one void to the neighboring void. The multiple voids interaction mechanism is de-
scribed by the simultaneous interaction of multiple voids positioned on a plane ahead of the crack tip both
during initiation and stable crack growth. The transition between the two mechanisms is governed by the
initial void volume fraction.

From our analysis of the three-dimensional model having spherical voids, we found similar results. To
exemplify the mechanisms, we considered models having voids of varying initial volume fraction. The
deformed void shapes for an initial void volume fraction of 0.0013 at the applied load level of
J/(Xo00) = 2.73 is shown in Fig. 3(a) and for an initial void volume fraction of 0.014 at the applied load
level of J/(Xy00) = 0.98 is shown in Fig. 3(b). Here J is Rice’s J-integral (Rice, 1968) and J = (1 — v*)K}/E
for small scale yielding and plane strain conditions. The initial void volume fraction is given by
fo =4nR;/(3X;). In Fig. 3(a), only the first void from the crack tip has significant volume increase while in
Fig. 3(b), the volume of several voids increases simultancously. Fig. 4(a) and (b) compare the void growth
rates in four unit cells ahead of the crack tip for the f, = 0.0013 case and the f, = 0.014 case respectively. A
conclusion can be drawn from the results shown in Figs. 3 and 4. For the case of a material having low
initial void volume fraction, only the void nearest to the crack tip undergoes a significant amount of
growth. This rationalizes well the single void growth mechanism. In contrast, for a material having large
initial void volume fraction, several of the microscopic voids positioned directly ahead of the crack tip grow
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Fig. 3. Deformed finite element meshes showing two distinct void growth mechanisms. (a) fo = 0.0013 and J/(Xo/00) = 2.73,
(b) fo = 0.014 and J/(X,/o0) = 0.98.
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Fig. 4. Comparison of the void growth rates in four unit cells ahead of the crack tip for (a) the f, = 0.0013 case and (b) the f, = 0.014
case respectively showing the void by void growth mechanism and the multiple void interaction mechanism.

concurrently. This rationalizes well the multiple voids interaction mechanism. Consequently, fracture
toughness will decrease as the increase of the initial void volume fraction.

To demonstrate the occurrence of interactions between neighboring voids for the multiple void growth
mechanism, the model containing five voids is compared with a model containing only one void. Fig. 5
shows the deformed void shape for the single void model. The deformed void shapes for f, = 0.0013 and
J/(Xoo¢) = 2.73 is shown in Fig. 5(a) and for f; = 0.014 and J/(Xyp00) = 0.98 is shown in Fig. 5(b).
Comparing with Fig. 3(a) and (b), the deformed shape of the model based on a single void is quite similar to
the deformed shape of the model containing five voids for the case of small initial void volume fraction
(fo = 0.0013). However, the deformed shapes are drastically different the case of large initial void volume
fraction (fy = 0.014). Fig. 6(a) compares the growth rate of the nearest void from crack tip between the

Fig. 5. Deformed meshes of the SSY model containing only one void. (a) f, = 0.0013 and J/(Xy09) = 2.73, (b) fo =0.014 and
J/(X()O'()) =0.98.
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Fig. 6. Comparison of the predicted (a) growth rate of the first void from the crack tip and (b) size reduction ratio of the first ligament
obtained using the single void model and the model containing five voids.

single void model and the model containing five voids and Fig. 6(b) compares the reduction of the ligament
between the advancing crack tip and the nearest void between the two models. The comparison are made
for two initial void volume fractions, f, = 0.0013 and fy = 0.014. For the case of low initial porosity, the
two models do not reveal any noticeable difference in void growth rate and the reduction rate of the lig-
ament between the crack tip and the nearest void. However, there is a noticeable difference for the case of
high initial porosity. These observations help us conclude that interaction exists between neighboring voids
for the case of large initial void volume fraction and the model containing one single void is not adequate to
predict the fracture toughness of the material.

3.2. Macroscopic behavior of a representative material volume

Assuming the existence of a periodic distribution of voids, the material can be considered as an array of
cubic blocks with each block being a unit cell having a void at its center. The macroscopic stress—strain
behavior of the unit cell is very important in developing the void containing element based on the con-
tinuum damage models or to aid in calibrating the parameters in the constitutive model (Kim et al., 2003).
Analyzing the process of void growth and coalescence in the unit cell is also necessary for establishment of
the ligament failure criterion.

The macroscopic stresses and strains of cells in the SSY model are computed as follows

Zij:l/a,»jdV,
vy )

Ey =) AEj,

where AE;; = 3 [((Aun; + Aun;)dS and V = [ x;n, dS. In above equations, X; represent the macroscopic
stress components, g;; represent the (true) stress components of the matrix, ¥ is the volume of the cell
including the void, E; represent the macroscopic strain components, u; denote the nodal displacement
components, and S is the outside surface of the cell with n; being the components of the normal vector of S.
These values are evaluated using the finite element integration scheme (Zienkiewicz, 1977). The macro-
scopic effective stress (X.,), hydrostatic stress (2},) and effective strain (E,) are given by
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1 2 2 211/2
Ze = 7§ |:(Zxx - Z}y) + (Z} - Z‘zz) + (Zzz - Zxx) i| )
1
Z:h :g(zm+2yy+zzz)7 (5)
V2 1/2
Eo=F {(Exx — )+ (Ey — En) + (B — Exx)z} .
To characterize the macroscopic stress state of the cell, the following stress ratios are introduced
Z‘h Zxx Z:zz
T = — = — = . 6
3. P1 Zw’ P2 z, (6)

Zhang et al. (2001) and Kim et al. (2003) studied the effects of the triaxial stress state and found that the
stress triaxiality ratio T alone cannot uniquely characterize the effect of macroscopic stress state on void
growth and coalescence. The Lode parameter should be used to distinguish different stress states having the
same stress triaxiality ratio. Defining

2222 - Z‘y_y - Zxx (7)
V3(Zy = Zw)

Zhang et al. (2001) and Kim et al. (2003) showed that a cell when subject to the same stress triaxiality ratio
would tend to react differently when 6 is different. The stress triaxiality ratio along with the parameter 6 can
be used to specify stress state.

Fig. 7 shows the variation of X, 7, p, and 0 as the increase of applied load J for four cells ahead of the
crack tip. Here the initial void volume fraction is f = 0.0079. As expected, the stress triaxiality ratio 7 and
the parameter 0 are not constant during the loading history. The triaxiality ratio increases with applied J in
the plastic deformation region of the cell. A sudden increase in triaxiality ratio occurs due essentially to
collapse of the cell and rapid drop of X.. The parameter 0 also increases with the applied load. This is
because the stress ratio in the thickness direction becomes larger as the applied J increases. Interestingly,
except for cell 1, the stress ratio p, remains almost a constant during the loading history. The deviation of
p, for cell 1 can be explained by the constraint loss of the crack tip due to blunting.

Fig. 8 compares the evolution of the macroscopic effective stress and the stress triaxiality ratio of cell 1
for different initial void volume fractions, fy = 0.0013, 0.0035, 0.0079 and 0.014. Initially, the effective
macroscopic stress increases with the applied J. Upon reaching the peak stress, the effective macroscopic
stress decreases rationalizing the occurrence of softening due to void growth, Fig. 8(a). The peak stress
value decreases and the J value for onset of coalescence reduces as f; increases. The stress triaxiality ratio of
cell 1 decreases during macroscopic elastic deformation of the cell. Depending on the level of initial porosity
the triaxiality ratio either increases, or conversely increases and then decreases in the plastic range, Fig.
8(b). The stress triaxiality ratio is lower for the cell having smaller f; value.

tan 0 =

3.3. Crack initiation

Macroscopic crack initiation is said to have occurred upon coalescence of the growing voids with the
crack tip. Several mechanistic observations have been put forth to explain void coalescence. Coalescence
can occur either through shear band formation or through formation of “void sheets”, i.e., nucleation and
growth of secondary and smaller voids in the ligament between larger voids. In some cases, the voids grow
till they impinge with the other voids or crack tip.

It is difficult to implement these coalescence mechanisms directly to the numerical model. As a viable
alternative several criteria based on the length of the ligament relative to the size of the void have been
proposed. Rice and Johnson (1970) suggested coalescence to occur when
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Fig. 7. Variation of (a) the macroscopic effective stress 2., (b) the stress triaxiality ratio 7', (c) the macroscopic stress ratio p, and (d) the
parameter 0 with the applied load J for the four cells, where cell 1 is the first from the crack tip and J represents the J-integral.
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reaches a critical value, such as one, where L, is the length of the deformed ligament between the void and
crack tip, and ¥, is dimension of the void in the crack opening direction. Brown and Embury (1973)
proposed void coalescence to occur through the conjoint influences of shear band development and void
impingement when the ratio of ligament length to the void dimension reached a critical value. In a com-
panion study, Le Roy et al. (1981) proposed an empirical relationship for void coalescence to occur only
when

f
b= 2Ry (9)

reaches a critical value, where 2R. is dimension of the void along the longest axis (major axis). Based on
experimental data the value of ¢ was suggested as 0.83 for the case of spherical voids. In their recent paper,
Tvergaard and Hutchinson (2002) used the ligament reduction ratio

L (10)

X:L_o
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Fig. 8. Variation of (a) the macroscopic effective stress and (b) the stress triaxiality ratio of cell 1 during the loading history for different
initial void volume fractions, f; = 0.0013, 0.0035, 0.0079 and 0.014.

as the parameter for the failure criterion. Here L, is the size of the initial ligament between the growing void
and the advancing crack tip and L, is the size of the deformed ligament. In their study, a critical ligament
reduction ratio (y,) of either 1/2 or 1/3 was used.

Our recent studies suggest that the ligament reduction ratio at the onset of coalescence is not a constant.
The critical ligament reduction ratio depends on the initial void volume fraction and the stress state in the
ligament. Considering the material composed of void containing cells, failure of the ligament between
neighboring voids corresponds to process of internal necking. To determine the critical ligament reduction
ratio for void coalescence, consider a unit cell containing a centered, spherical void. Coalescence (internal
necking) will occur when the macroscopic deformation of the cell shifts to a uniaxial strain state (Koplik
and Needleman, 1988). To utilize this idea, we analyze a cubic cell having a spherical void at its center and
subjected to loading conditions similar to the cells in the SSY models discussed in the previous section. A
one-eighth symmetric finite element mesh of the unit cell model and the resultant deformed shape are shown
in Fig. 9. Displacement boundary conditions are prescribed on the outer surfaces of the cell. The dis-
placement component in z-direction is constrained on the face normal to z-axis. The displacement com-
ponents are specified on the faces perpendicular to x-axis and y-axis incrementally using the procedure
developed by Faleskog et al. (1998) so that the macroscopic stress ratio p, = 2,,/%,, remain constant

Fig. 9. A one-eighth symmetric finite element mesh and the deformed shape for the unit cell containing a centered, spherical void.
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Fig. 10. (a) Variation of the deformed cell width in x-direction with the macroscopic effective strain of the cell revealing the shift to
uniaxial straining. (b) Macroscopic effective stress versus effective strain of the cell displaying the macroscopic softening. Here p, is
specified as 0.54 and the symbols denote the onset of coalescence.

during the loading history. Variation of the deformed cell width in x-direction with the macroscopic
effective strain of the cell, shown in Fig. 10(a), reveals the shift to uniaxial straining. Fig. 10(b) shows the
macroscopic effective stress versus effective strain for the cell displaying the macroscopic softening. The
cubic unit cells were analyzed for various void volume fractions (fy) and for a fixed stress ratio of p, = 0.54.
The variation of macroscopic effective stress is shown in Fig. 10(b). The circles in Fig. 10 represent the onset
of uniaxial straining mode, i.e., void coalescence.

The unit cell analyses were conducted for varying initial void volume fraction, f, = 0.0009, 0.0013, 0.002,
0.0035, 0.0079, 0.014 and 0.02182 and several values of stress ratio, p, = 0.44, 0.54, 0.64 and 0.74. Both the
ligament reduction ratio (y) and the ratio of ligament size to void size along the crack opening direction (y)
were calculated at the onset of void coalescence. Fig. 11(a) reveals the variation of critical ligament re-
duction ratio (i) as a function of p, and f; while Fig. 11(b) shows the critical ratio of ligament size to void
size in the crack opening direction (y,) as a function of p, and fy. Both y, and y, are not constant but

<
0.1 —o— p, =074
0.0 L L 0.0 I L
0.00 0.01 0.02 0.00 0.01 0.02
(a) fy (b) fy

Fig. 11. (a) Variation of the critical ligament reduction ratio (y.) as a function of p, and f;. (b) Variation of the critical ratio of ligament
size to void size in the crack opening direction (y.) as a function of p; and f;.
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functions of the stress state and initial void volume fraction. An increase in either initial void volume
fraction or applied stress ratio tends to increase y..

To apply these results in the SSY model to predict crack initiation, it is necessary to estimate the
macroscopic stress ratio p, of the ligament between the crack tip and the first void. However, it is difficult to
calculate the ligament stress ratio p, directly. We approximate the ligament p, value by extrapolation. In
Fig. 3(b), it is visualized that cell 1 is positioned at a distance of 0.5X; and cell 2 has a distance of 1.5X; from
the first ligament. Therefore, p, of the first ligament can be extrapolated using the macroscopic stress ratios
calculated for cell 1 and cell 2. By comparing the extrapolated p, value for the first ligament of SSY model
to p, values and critical ligament reduction ratios (y,) of the unit cell for a given initial void volume
fraction, it is possible to determine the applied J at which the first void coalesce with the crack tip. This
applied J value can be regarded as the fracture initiation toughness (Ji.).

Using the above approach, the variation of Ji. with fy can be predicted. Fig. 12 shows the dependence of
Ji. on the initial void volume fraction. The value of Jj. increases with decreasing f,. For small values of f;
where material failure occurs as a consequence of void by void growth, the material exhibits large resistance
to fracture initiation. Fracture toughness can be improved significantly by reducing the initial porosity. As
fo increases, fracture toughness decreases. At some level of f; a transition of failure mechanism to the
multiple voids interaction occurs.

Fig. 12 also compares the predicted fracture initiation toughness in this study with he results obtained
using the constant critical ligament ratio of 1/2 for the three-dimensional model with spherical voids. It can
be seen that using y, = 1/2 the fracture toughness is over-predicted for large values of f; but under-pre-
dicted for small values of f;.

For comparison, the two-dimensional results by Tvergaard and Hutchinson (2002) obtained using a
constant critical ligament reduction ratio of 0.5 for the cylindrical voids are also displayed in Fig. 12. It can
be seen that the three-dimensional model with spherical voids predicts higher fracture toughness than the
two-dimensional model with cylindrical voids. At high values of initial void volume fraction (fy > 0.02),
both models reveal marginal difference in fracture toughness. However, the discrepancy in fracture
toughness of the two models becomes prominent for low values of initial void volume fraction. For a void
volume fraction of 0.0013 the material containing spherical voids is 1.6 times tougher (in terms of Ji.) than
the material containing cylindrical voids.

Fig. 13 shows the comparison of the estimated toughness to the experimentally measured data sum-
marized in McMeeking (1977) and Tvergaard and Hutchinson (2002). The experimental data are repre-

3.0

—a— %,=0.5: Cylindrical Void
25+ (Tvergaard & Hutchinson)
—O— %,=0.5: Spherical Void
—&— Current work

20

X 15

1.0

0.5

0.0 L !
0.00 0.01 0.02

Fig. 12. Variation of normalized fracture initiation toughness (Ji.) with initial void volume fraction (f;) predicted using different
material failure criteria.
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Fig. 13. Comparison of the estimated fracture initiation toughness to the experimentally measured data summarized in McMeeking
(1977) and Tvergaard and Hutchinson (2002). The experimental data are represented by symbols.

sented by symbols and pretty much scattered. It is important to note that the experiments were conducted
for several materials and the material properties are not same. Since the vertical axis of the original graph is
COD normalized by void spacing, a relation COD = 0.5J./a, is used to convert the computed Ji. to COD
as suggested by Tvergaard and Hutchinson (2002). The horizontal axis of Fig. 13 is void spacing nor-
malized by the initial void diameter. Note that a cylindrical void represents much larger void volume
fraction than a spherical void having the same X;/R,. The fracture toughness predicted using the two-di-
mensional model (cylindrical void) substantially underestimates the experimental data. Adoption of the
three-dimensional model (spherical void) and a constant critical ligament reduction ratio y, = 1/2 for
ligament failure gives reasonably well estimate of Ji. for materials containing high initial porosities. But for
the low porosity material, the fracture toughness is underestimated. The method suggested in this study
improves the prediction of fracture initiation toughness.

3.4. Crack advance

To model crack growth, the ligament nodes on the symmetry plane are released when the ligament
reduction ratio reaches the critical value y, depending on the macroscopic stress ratio p, of the ligament and
the initial porosity f;. A sudden release of the reaction forces at the ligament nodes causes numerical in-
stability and therefore, several increments are needed to step down the reaction forces to zero. The de-
formed mesh immediately following the release of the nodal reaction forces of the first ligament is shown in
Fig. 14(a). Since the reaction forces, which ensure plastic deformation of the ligament, are removed, a large
portion of the released ligament experiences elastic unloading with only the weakest region undergoing
severe deformation. As the applied load (J) increases, the next ligament reaches the critical reduction ratio
and the ligament nodes on the symmetry plane are released. The deformed mesh prior to release of the
second ligament is shown in Fig. 14(b). The process continues and the crack front moves forward.

The crack growth resistance curve can be obtained by plotting the value of J at which each ligament
reaches the failure criterion versus the amount of crack length increase. Crack advance takes place in
discrete increments of void spacing X;. Fig. 15 shows the fracture resistance curves for three values of initial
void volume fraction, where the amount of crack growth (Aa) is normalized by X, and the value of J is
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Fig. 14. Crack growth by releasing ligament nodes. (a) Deformed mesh immediately following the release of the nodal reaction forces
of the first ligament. (b) Deformed mesh immediately prior to release of the second ligament.
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Fig. 15. Predicted fracture resistance curves for three values of initial void volume fraction, where the amount of crack growth (Aa) is
normalized by X, and the value of J is normalized by Xyay.

normalized by Xjo,. The fracture resistance curve for the case of large initial void volume fraction displays
relatively flat slope due to the multiple voids interaction mechanism. On the other hand, for the material
having small initial void volume fraction, the fracture resistance curve shows a large increase in J required
to propagate the crack as a result of void by void growth mechanism.

3.5. Discussion

In the above crack initiation and growth analyses, the boundary conditions of the SSY model are
prescribed according to the asymptotic K field and the T-stress is taken to be zero. Nonzero T-stress values
can be used to study the constraint effect on ductile crack growth. Using the procedures laid out in Sections
3.3 and 3.4, there is no technical difficulty to model crack growth with nonzero 7-stress. Fig. 16 shows the
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Fig. 16. Effect of negative 7-stress on the fracture resistance curve.

effect of T-stress on the fracture resistance curve. As expected, negative T-stress raises the fracture resistance
as well as the tearing modulus (slope of the curve).

Most engineering materials contain more than one populations of inclusions and/or second phase
particles. Voids often nucleate at relatively low stress levels due to fracture or decohesion of the large
inclusions. As deformation increases, large plastic flow is localized between the enlarged voids and between
the void and the crack tip. Consequently, small particles in the ligaments will nucleate secondary mi-
crovoids. Rapid growth and coalescence of secondary voids will accelerate the ligament failure process.
However, nucleation and growth of secondary microvoids are not taken into account in the above analyses
and discussions. Therefore, the critical ligament reduction ratios determined in Section 3.3 can be regarded
as lower bound values and the fracture toughness values predicted using those critical ligament reduction
ratios are upper bound values for the material.

To illustrate the effects of secondary voids, we assume nucleation of the secondary voids is plastic strain
controlled and the secondary voids are smeared in the material. It is further assumed that void nucleation
follows a normal distribution as suggested by Chu and Needleman (1980). The rate of increase of void
volume fraction due to nucleation of secondary voids is given by

fnucleation == ng (1 1)
where
i e
& — &N
D=—""_exp| -2 12
SyV 2T P 2 < Sy > (12)

In above equations, & represents the matrix plastic strain and the void nucleation parameters adopted here
are fy = 0.004, ey = 0.3 and sy = 0.1.

To account for the growth of secondary voids and its effect on material failure, the Gurson-Tvergaard
constitutive model is used to describe the material behavior, i.e.,

32 3%,
(D—§+2q1fcosh(cpz—6>—1—6]%f2:07 (13)

where the parameters ¢, and g, were introduced by Tvergaard (1982) to improve predictions of the original
Gurson model (1977). Here ¢; = 1.5 and g, = 1 are used in the analysis.
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Fig. 17. Comparison of the predicted the critical ligament reduction ratios with and without secondary voids.

Now reconsider the unit cell shown in Fig. 9. Following the same procedure as outlined in Section 3.3,
effects of secondary voids on the critical ligament reduction ratio can be studied. Fig. 17 compares the
critical ligament reduction ratios with and without secondary voids. It is clear that nucleation and growth
of secondary voids raise the critical ligament reduction ratio for coalescence, i.e., ligament failure occurs
earlier with the secondary voids.

It is important to point out that the above computed y, values with secondary voids being considered are
just for the purpose of illustrating the trends of the secondary void effect. Because the equations and pa-
rameters used to describe nucleation and growth of secondary voids are ad hoc. More detailed analyses are
needed to quantify the effect of secondary voids.

4. Concluding remarks

In this study, several spherical voids are included in the three-dimensional, small scale yielding model to
simulate the material failure process and ductile crack growth. Two distinct void growth mechanisms, void
by void growth mechanism and multiple void interaction mechanism, initially put forth by Tvergaard and
Hutchinson (2002) for the case of a two-dimensional model containing cylindrical voids, are well contained
in the model developed in this study and containing spherical voids. For materials containing large initial
porosity, multiple voids grow simultaneously and the interaction between voids is significant. Therefore, the
model containing one single void is not adequate to predict the fracture toughness of the material.

A material failure criterion, based on the occurrence of void coalescence (internal necking) in the unit
cell model, is established. The critical ligament reduction ratio, which varies with the macroscopic stress
state and the initial porosity, is used to determine ligament failure between the crack tip and the nearest
void. A comparison of crack initiation toughness of the model containing cylindrical voids with the model
containing spherical voids reveals that the material having the same volume fraction of spherical voids is
tougher than the material having cylindrical voids. The proposed material failure determination method is
then used to establish the fracture resistance curve (J-R curve) of the material. For a ductile material
containing a small volume fraction of microscopic voids initially, the void by void growth mechanism
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prevails, which results in a J-R curve having steep slope. On the other hand, for a ductile material con-
taining a large volume fraction of initial voids, the multiple voids interaction mechanism prevails, which
results in a flat J—R curve. Numerical analyses were also performed to examine the effect of 7-stress on the
fracture resistance. As expected, negative 7-stress raises the fracture resistance as well as the tearing
modulus (slope of the curve).

The critical ligament reduction ratios computed in Section 3.3 can be regarded as lower bound values
because effects of nucleation and growth of secondary microvoids are not taken into account. As a result,
the fracture toughness values predicted using these critical ligament reduction ratios are upper bound values
for the material. A preliminary study of the effect of secondary voids reveals that nucleation and growth of
secondary voids raise the critical ligament reduction ratio for coalescence, i.c., ligament failure occurs
earlier with the presence of secondary voids.
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